GAME: Evolva
Protection: Laserlock
Author: Luca D’Amico - V1.0 - 20th April 2022

DISCLAIMER:

All information contained in this technical document is published for general information purposes only and in
good faith.

Any trademarks mentioned here are registered or copyrighted by their respective owners.

I make no warranties about the completeness, correctness, accuracy and reliability of this technical document.
This technical document is provided "AS IS" without warranty of any kind.

Any action you take upon the information you find on this document is strictly at your own risk.

Under no circumstances | will be held responsible or liable in any way for any damages, losses, costs or
liabilities whatsoever resulting or arising directly or indirectly from your use of this technical document. You
alone are fully responsible for your actions.

You will need:

- Windows XP VM (I used VMware)

- x64dbg (x32dbg)

- Python 3

- Original game disc (you need the ORIGINAL, otherwise this will not work)

Before you start:
Laserlock was a widely used copy-protection scheme during the late 1990s and early 2000s.

The way it works is simple: some API calls will be replaced with a call to a function located in a DLL
that is called like [gamearchlib].dll (in our case it is evo32lib.dll), that will retrieve the real API
address, by checking the address where the call originated from.

To defeat this protection, we will need to obtain all the correct APl addresses used by the game and
replace all the calls to the Laserlock DLL inside the game’s binary. Unfortunately, this is made a bit
complicated due to numerous CRC checks in this library.

Let’s begin:
Install the game and load Evolva.exe into the debugger (make sure to keep the original disc in the

drive), click RUN and the game should start just like usually: there isn't any anti-debugging checks in
place.

Reload the debugger. Once at the entry point of the module, you will see this:

Ir. &5 push ehp ENTry
SBEC mowv ebp,esp
&a FF push FFFFFFFF
&5 FE8E27300 push ewvolwa.7852F8
&5 s0B17000 push ewolwa.7OEBLl&0
&4: A1 00000000 mow eax, dword ptr l:[0]
co push eax
G4:5925 00000000 mow dword ptr @ [0].e5p
S3EC 58 sub eszp,tE
£2 push ebx ebhxit
& push esi
7 push edi
5965 ES mow dword ptr ss:i[ebp-12],es5p
FF1t FSDOSFEOOQ call dword ptr ds:[<&CalliLl=]
2302 wor eds,edx
sA04 mow dl.ah

The first call is very suspicious: it would have been reasonable to expect a call to GetVersion, but
instead we have a call to a function called CallDLL in the evo32lib.dll library:

FU=T11 2>
push edi
mow dword ptr ss:i[ebp-12],es5p
call dword ptr ds:[<&calloLl=]

®ar
moy
mow
mo
and
mo

[]

ed, edx
dl, ah

BN, BAX
ecx,FF

10001003 <ewodzlib.CallDLl=
dword ptr ds:[8§39F73],ed=|nop

nop
nop

dword ptr ds:i[£339F74],ecx|nop

Let’s try to proceed by stepping within the disassembly and by entering into the call to check what's

happening there.

After some NOPs we'll get to the interesting part:

[LOO01l04E
o001
[Loool0o4n
LOO0Ll0d4F
[LOo01l0s0
LO001l051
[Looolns2
Looolns3
[LOO01054
Loo0lDEs
[LOoo0l0ES
[LOO0L0O5A
[LOOOL0SF
LooolDes
LOO01l0EE
[LOoo0l0eD
Looolnes3
Looolnyy
LO001l0yS
Looolnys
[LOOOLO A
LOO01l0D7E
[LOooo1l0yrC
Looolnyn
[LOO01l0YE
LOO0Ll0D7F
Looolnes
LOoo0l0E4
Looolnss
Lo00l0ae
Loooloay
Loooloas
Looolnes
[LOO0L10EA

[LooolDan
hnnnanae

0

EL

SBEC

D

£3

£l

£z

1)

EF

J&18B45 08

50

ES S2FBFFFF

GEIE3C4 04

FE:SEOO

5020 ECEE0110 01
v OF&4 0C000000

JE:18945 04

EF

EE

A

£a

EE

£

5D

3

2E18945 08

EF

tE

EA

£3

EE

£

5D

53C4 04

3
an

push
push
13 l0%s
push
push
push
push
push
push
1y L%y
push
call
add
13 L%y
CHip

[y (ks
pop
pop
pop
pop
pop
pop
pop
ret
o
pop
pop
pop
pop
pop
pop
pop
add

ret
nak

£ a
ebp

ehp,esp

eax

ehx

e

edx

es5i

edi

eax, dword ptr ss:[ebp+E]
£ A

evo3zlib.100015EL

Sh. 4

eax, dword ptr ds:[eax]
byte ptr ds:[100168EC],1

je ewvo321ib.10001D7F

dword ptr ss:[ebptd4], eax
edi
es5i
edx
=]
ebx
£ ax
ebp

dword ptr ss:[ebp+s], eax
edi

251

edx

BCx

ebx

£ ax

ebhp

E5h, 4

Let’s keep stepping until we reach the instruction right after the call located at 0Ox10001D5A. Now
check the return value stored in the EAX register:

Hide FPU
En 00FSEL40 cevio]wa. LoetVersian:
EE* FFFDS 000 aL"=ii=1%0"
EiZx O012FESC
ED FC91E4F4 <ntdlT.KiFastsystem-alll
EEF O01z2FF40
ESF 0O012ZFFz4

As expected, this call was originally a GetVersion call @)

If we continue stepping, we will notice that the conditional jump located at 0x10001D6D will not be
taken, and the function will end at the RET located at 0x10001D7E. Afterwards GetVersion will be
called (directly from the RET, since its address was moved on the stack)

We still don’t know the meaning of that conditional jump, but we will be back to this soon.

When we will be back at the main module, we can continue stepping over all the instructions until
we can follow the second call to CalIDLL.

Again, let’s keep stepping over all the instructions until we reach the one just right after the call
located at 0x10001D5A. Then check the EAX register, again:

Hide FPU
EAx 007sEQS4 <ewolwva. LaetCarmmandLi ness
EE FFFOFO0O0 SL"=1i=12nM"
B O01z2FESC
E D FCI1E4F4 <ntdl1.KiFastsystemZal 1Ret=

Now it is quite clear what’s happening: these APIs, called by the game, were all replaced with the
same function called CalIDLL located in the evo32lib.dll. The CallDLL function will check from where
the call was originated and will provide the correct APl address needed by the game, which will then
be executed using the RET instruction (because that address was moved on the stack at the right
position).

The first thing that would come to our minds is to find some free space to write a simple assembly
routine to parse the .text segment finding all the calls to CallDLL, jumping into each of them and
once we retrieved the correct APl address (stored in EAX), patch the code to jump back to our
assembly routine and finally fix the initial call with the correct address.

Unfortunately, this will not work...

Let’s try to put breakpoint at 0x10001D5F (right after the call that retrieves the correct APl address),
click RUN on the debugger each time it will break at that address and after a couple of iterations, the
game will crash...

Why? Because Laserlock will do some CRC checks on the game’s binary in memory, and if it will
notice any modification (like patches, hooks and software breakpoints) it will return wrong API
addresses.

We can use hardware breakpoints (even if it only is possible to use at max 4 of them at the same
time. They don’t alter the code at all, so they will not be detected!) to break at the right address and
to fix the calls to make them point to the right functions, but there is another problem:

Laserlock will also check the .text segment and if any patch is detected (like, obviously our patched
bytes needed to fix the calls) the result will be a game crash.

Let's take a moment to assess the overall situation:

1) We know that the original API calls were all replaced with the same function called CallDLL
inside the Laserlock DLL

2) We know that CallDLL, after its checks, will retrieve the correct API based on the address
where the original call originated from (this value is retrieved from the stack).

3) The CallDLL code is checked against any modification.

4) The .text segment code is also checked against any modification preventing us to fix the calls
by patching them.

5) Due to 3) and 4), we CAN’T use software breakpoints and we CAN’T patch anything.

6) We still don’t know what’s the purpose of the conditional jump that takes place just after
the call that retrieves the original APl addresses

This situation is a bit complex, huh? Welcome to the reverse engineering world @

Let’s start from point number 6: once we will understand what’s going on there, we can think of a
way to solve everything else.

The most practical method to figure out the difference between these two RETS, is to put a
hardware breakpoint on the address of the last one (0x10001D8D):

10001084 53C4 04 add esp, 4
3 ret

1000108E L0 nop

1000108F 20 nop

Once the execution will break, continue by stepping inside the API code until the return to the main
module is reached. Once there, scroll up a few lines above and you will notice that the call to CallDLL
has been modified (at 0x6E9764):

- s e oo [P,
®||005ES7E]L 5943 28 mow dward ptr dsi:[eb=+35],eax
®||005ES7 G4 ES 47430400 call <IMP.LGetFileversionInfoss

EECO test eax,eax

-#||006ES7GE v 75 0E jne ewvolwa.sE97 7B

It isn’t the usual call, indeed if we follow it, we will find this:

[007Z0AED [~ FF25 B4E27 600 [imp dword ptr ds:[<&GetFileversionIntoAs]

Let’s restart the debugger and go straight to that address, we will see:
[00F20AED | FF15 F&OSFEOD |call dword ptr ds:[<&CalloLl=]
During the execution, that call turned into a jump.

What does this mean? The conditional jump we were analysing decides whether the current API
must be reached via a call or a jump!

We need to pay attention to this behaviour, because when we will fix all the calls, the ones that will
take this conditional jump, needs to be turned into jumps!

We now have everything we need to know. Keep in mind that we CANNOT patch anything and we
CANNOT use software breakpoints. Instead, we will use hardware breakpoints in a creative way.
We will log the address of the correct API, the address where the call originated from and the
boolean value that decides whether the current API should be reached by a call or by a jump.
Next, we will write a little Python script that will patch the binary, removing Laserlock.

This is what we will do:

1) We will write some assembly code to parse the .text segment, looking for all the calls to fix

2) Once we will find a call to CalIDLL we will jump at that address

3) We will set the first hardware breakpoint at 0x10001D5F (right after the call that will
retrieve the correct API, inside the CallDLL function), in order to get a log of the data that we
need to fix the call later.

4) We will set the second hardware breakpoint on the first RET, in order to alter the execution
flow to jump back to our assembly code

5) We will set the third hardware breakpoint on the second RET, in order to alter the execution
flow to jump back to our assembly code (remember that if this RET is executed, the API will
be reached from a JMP)

6) Once we will have all the needed data logged, using some Python code we will “cold-patch”
the game’s executable. Finally, we can remove the evo32lib.dll dependency from the EXE
file.

The first thing to do is to look for some free space where we can put our assembly code. I've found a
nice code cave starting from 0x350000. Let’s click on the Memory Map tab, select the right entry
(the one that starts from 0x350000) and right-click and select “Set Page Memory Rights”. Then select
FULL ACCESS and click on Set Rights.

Let’s return to the CPU View Tab, go to 0x350000, and carefully write this code:

ao3coooo ES 00104000 moyw ecx,evolwa. 401000
® (00350005 £13% FF1ESFS8DS cmp dword ptr ds:[ecx],DSF21E5FF
-® || 00350008 ~ 75 0OE jne 35001lE
& (00350000 5200 500032500 moy dword ptr ds:[350050],ecx
® (00350013 ~ FFEL1 jmp ecx
@& (00350015 SEOD 50002500 moy ecx,dword ptr dsi[350050]
+@ (|0035001E 41 inc ecx
® (0035001 S1F3 00EOFe&00 Cmp ecx, <evolwa. &7xm_Newdd AR AV=M_HANDL EGEx7Fx
® (00250022 ~ 75 E1 jne 350005
- a0 nop
® (00350025 aooo add byte ptr ds:i[eax],al

The first line stores the starting address of the .text segment in the ecx register.

The CMP opcode checks if the dword pointed to by the address currently stored in ecx is a CallDLL
call (if you pay attention to the bytes compared, you will notice that they are written in reverse, as
the byte order is little endian). If there is no match, then ecx will be incremented by 1 in order to
point to the next address.

Then there's another CMP, to check if we arrived at the end of .text segment. If there is a match,
and we are in front of a call to CallDLL, we will first store the current address in some free memory
(I've chosen 0x350050) and then we will jump into it, with the jmp ecx located at 0x350013.

Once we will correctly set the hardware breakpoints inside CallDLL, we will jump back exactly at
0x350015 and we will restore the previously saved address in ecx in order to continue our parsing of
the .text segment.

Let’s right-click on 0x350000 and select Set New Origin Here, so we can tell the debugger that it has
to start from this address when we will hit RUN. Let’s put a breakpoint at 0x350024, so we can break
here once all the APIs are logged. DO NOT USE int 3 here, otherwise the game will crash.

Before we launch our assembly code, we have to properly set the hardware breakpoints in CallDLL:

® | LUULLU4E su pUSN eax

® (10001042 4 push ebp

® 10001040 SBEC mow ebp,esp

®(10001D4F 50 push eax

& 10001DE0 c3 push eh«

® (10001051 £l push ecx

® (10001052 L2 push edsx

10001053 EE push esi

® (10001054 57 push edi

® (| 10001DEE I 5B45 08 moy eax,dword ptr ss:[ebp+s]
® 10001053 = push eax

& || 1000105~ ES SZ2FEFFFF call evo32lib.100015E1

@ || 1000105F EEIE3C4 04 add sp, 4

& 100010e3 JE: SEOQQ moy eax, dword ptr ds:[eax]

e (10001066 8030 ECES80110 01 cmp byte ptr ds:[1001&8EC],1
-@((100010&0 = OF&4 QoZo0aooad je ewo221ib.1000107F

® (10001073 3615945 04 may dword ptr ssilebp+4], eax
® (10001077 CF pop edi

® 10001075 SE pop esi

(10001072 A pop edsx

(1000107 A =) pop ecx

®(10001D7E = pop ebx

e (1000107 C 5 pop Eax

® 10001070 A pop ebp

® || 1000107FE e ret

v@ (| 10001DFF 615945 08 may dword ptr ss:[ebp+3], eax
® 10001053 SF pop edi

® (10001054 SE pop esi

& 10001D8E A pop ed=x

®(10001D86 ca pop ecx

® (10001087 CE pop ehe

10001055 E& pop eax

® (10001082 5D pop ebp

& || 1000108A S53C4 04 add esp, 4

10001050 3 ret

We have to set the first hardware breakpoint at 0x10001D5F in order to log the retrieved API, the
address where the call was originated (located in the .text segment) from and the byte stored at
0x100168EC (which will tell us if the APl should be reached from a call or a jump).

So, let’s right-click that address and select Breakpoint->Set Hardware on Execution, then head over
to the Breakpoint tab, right-click the newly created breakpoint and select Edit. Let’s configure it this
way in order to log all the data we need:

Edit Hardware Breakpoint evo32lib.10001D5F X

Break Condition: |

Log Text: |{eax} [{[esp+24]-0x6} [4[0x1 00163EC]}

Log Condition: |

Carmmand Condition: |

Mame: |

|
|
|
Command Text: |run |
|
|
|

Hit Count: o 5

[] singleshoot [#] Silent [] Fast Resume [Save H Cancel]

If you are wondering why 0x6 is subtracted from the return address remember that we need the
address from which the call originated. In [ESP+24] the address of the next instruction AFTER the call
is stored so we need to subtract 6 bytes in relation to this address in order to get the correct one we
need. The call to CallDLL code is indeed 6 bytes long. The “run” command in Command Text is
needed to automatically resume the execution after having logged the data we are looking for.

It's time to set the last two hardware breakpoints on the RET instructions respectively located at

0x10001D7E and 0x10001D8D. Since we want the execution flow to jump back to our assembly
code, we need to configure both of them in this way:

Edit Hardware Breakpoint evo32lib. 10001D7E rz|

Break Condition:

Log Texk:

Log Condition:

Carmmand Condition:

Mame:

| |
| |
| |
Command Text: |eip = 0x00350015;run |
| |
| |
| |

0 B

Hit Count:

[] singleshoot [#] Silent [] Fast Resume Save] [Cancel]

We are ready to execute our code! Let’s go to the 0x350000 address and click RUN. Once the
execution is completed, we will be stopped at 0x350024:

00250000
00250005
002E000E
00250000
00250012
002E001E
002E001E
002E001C
Oo3E00z22

00350025

AnTEana T

EZ 00104000 mow
5139 FFLlSFS05 crp
75 0E jne
5200 50002500 Moy
FFE1 Jmp
SEOD SO0003500 Moy
41 inc
S1F% 00EOQY&00 Crmp
75 E1 ine
0 nap
oooo add
[alalalal -

ecx, evolwa. 401000
dword ptr ds:[ecx],05FS15FF

ILO001E

dword ptr ds:[350050],ecx
BN

ecx,dword ptr ds:i[350050]
BCx

B, € EWO T WA A7 RN ewddE A P AN _HANDLE@E: T
2E0005

byte ptr ds:[ea<],a

[s L LTk S |

Perfect, let’s click on the Log tab and you will find all the calls to CallDLL logged there @

% ZPLI

YeE1CEZ | S3ES7D |0
FEE1CC|ESERLZ|D
YeE1C2| EOF2F2|0
YeE134 | 53F533(0
YeELCC|S53F5dz |0
FEE1CE2| BAZFED |0
YeE1CC| BAd0zz (0
YeE1C4 | SAZICZ|0
YeE1CEZ | SEZADC|O
7EE154 | EEZBEA|D
YeE1CC| EEZEBFD |0
TRREICE I ERERRCIN

Lt Liog

_H Motes ® Ereak

Let’s copy all the entries into a new document called calls.txt, and we are finally ready to write a
Python script to patch the executable.

This is the Python code that I've written for our purpose:

class Patch:
def init_(self, api addr, call addr, is_ jmp) :
self.api addr = api addr
self.call addr = call addr
self.is jmp = is jmp

def get api_ addr (self):
return self.api addr

def get call addr (self):
return self.call addr

def is_ jump (self) :
return self.is jmp

def read patches from file(file path):
f = open(file path, 'r'")
lines = f.readlines|()
f.close()
return lines

def parse patches (txt patches, imagebase) :
patches = []
for txt patch in txt patches:
patch parts = txt patch.split('|")
patches.append (Patch (int (patch parts[0], 16),
int (patch parts[1l], 16) - imagebase, bool (int (patch parts[2]))))
return patches

def apply patches to file(file path, patches):
f = open(file path, 'r+b')
for patch in patches:
f.seek(patch.get call addr() + 0x2)
f.write(patch.get api addr().to bytes (4, "little"))
if (patch.is jump()) :
f.seek(patch.get call addr() + 0x1)
f.write (bytes ([0x25]))
f.close()

if name == " main ":
txt patches = read patches from file('calls.txt')
patches = parse patches (txt patches, 0x400000)
apply patches to file("Evolva.exe", patches)

Everything here is really simple: we will read all the data from calls.txt. Every single line will be split
using ‘|’ character as a separator, and every patch will be applied to the .text segment.

If the APl should be reached by a jump, we will patch the corresponding byte turning that call in a
jmp (by replacing the 0x15 opcode with 0x25).

Please keep in mind that we have to subtract the imagebase address (0x400000) from the address of
the calls we will patch in order to obtain the corresponding file offset.
We can then load our new executable into the debugger and check it out:

ooroezes || . FF1S 40E17600

call dword ptr ds:[<&Getversion:]
oo070EZSE || . 33D2 xar edx,edx
aoFoezs0 0 sAaD4 maow d1, ah
0070BZEF [|. 8915 7FS9FS300 mow dword ptr ds:[839F7F8], edx
aoO¥0oBz 95 o SBCE Mo BT, Bax
aoaFoez97 o S1E1 FFOOOOOO and ecx,FF
oo7o0Eze0 (). 890D F49F5300 mow dword ptr ds:[839F74], ecx
OOFOoEzAZ 0 C1E1 08 shl ecx,s
0070BZAG (| . 0O3CA add ecx,edx
0070BZAS (|, 890D FO9FS300 mow dword ptr ds:[839F7F0], ecx
ao¥oBz2AE o C1ES 10 shr eax,10
OO070EZEL (]. A3 &COFS300 mo dword ptr ds:[839F6C], eax
0070B2ZES || . 33F6 ®xor esi,esd
0070EZES || . 56 push e51
aov¥oezES 0 EZ 2DEL1OO00 call evolwa.7le3EE
0070BZEE || . &9 pop ecK
ooF0BZEBF o B5C0 Test eax,eax
aoFoez2cl o FE 08 jne ewolwa.70B2CE
aoaFoe2ic2 0 gA 1C push 1<
aoOFoB2iCE 0 E& EBOOOOQOOO call evolwa.7FOE3FA
ooFoezCAa|]. 59 pop BCx
O070EZCE ||» 8375 FC moy dward ptr ss:[ebp-4],es51
ooF 0Bz CE o ES FzA40000 call ewvolwa.71E57CE
0070E202 (| . FF15 S4E07&00 call dword ptr ds:[<&GetCommandliness]

Where the CallDLL calls used to be now there are the correct APIs.

Well done, you successfully removed Laserlock copy protection scheme from this executable @
However, the work isn’t yet finished...

Cutscenes fix:
If you launch the game without the disc in the drive you will find that the initial cutscenes aren’t
played back. Well, if you carefully check the game’s directory, you will find that they aren’t there.

Let’s put the original game disc into the drive and copy the FMV directory to the game installation
folder. Then open the Registry Editor (cmd+r -> regedit [RETURN]) and edit the value of this key:
HKEY_LOCAL_MACHINE\SOFTWARE\Computer Artworks\Evolva\1.0\FMVDir

To: \\FMV

Now the cutscenes will be loaded from the game’s directory.

Removing the evo32lib.dll dependency:
Everything is working perfectly but our binary still depends on the evo32lib.dll library that was once
needed by Laserlock. We don’t need this dependency anymore.

Let’s load Evolva.exe into CFF Explorer and then click on Import Directory. Now select evo32lib.dll
and click on Delete Import Descriptor:

=l Doz Head
3 N?E E; = szdnsi (nFunctions) | Dword Cward
3 eaders
— = File Header evo3ZLIB.dl h:;ve — {Lﬂad:;;r;cm. Qo000
‘IE] Optional Header KERMELZZ.dIl 0o00aac
=l Data Directories [«] UsER3=. 4l | Delete Import Descriptor Qoooo
é‘ ISEDMTE:.H EE'tderS [+ GoIsz.di f 003ECA0C 0o00aa;
mpirk Cirechon
) Resource Directory aovapIzz.di & DO03ECSE4 o000
L TLS Directory ole3z, di 5 O03ECEC Qo000
"‘_..:,rﬁddress Converter WINMM, Il 9 003ECT9C 00000
‘.;{f 53'“::";“"“5’ Walker 4 _selk.dl 2 003ECSDE 00000k
= Ay ibnr

Let’s save it and we will finally have a totally Laserlock-free binary@

Credits:
I'd like to thank m00k0O who helped my A LOT by reviewing this paper and correcting all the spelling
and grammar errors! You are AWESOME!

Conclusion:

| hope that you liked this technical paper. Reversing these very old DRMs is quite fun and you learn a
lot!

Luca

